74 research outputs found

    The structures of Hausdorff metric in non-Archimedean spaces

    Full text link
    For non-Archimedean spaces X X and Y, Y, let M♭(X),M(V→W) \mathcal{M}_{\flat } (X), \mathfrak{M}(V \rightarrow W) and D♭(X,Y) \mathfrak{D}_{\flat }(X, Y) be the ballean of X X (the family of the balls in X X ), the space of mappings from X X to Y, Y, and the space of mappings from the ballen of X X to Y, Y, respectively. By studying explicitly the Hausdorff metric structures related to these spaces, we construct several families of new metric structures (e.g., ρ^u,β^X,Yλ,β^X,Y∗λ \widehat{\rho } _{u}, \widehat{\beta }_{X, Y}^{\lambda }, \widehat{\beta }_{X, Y}^{\ast \lambda } ) on the corresponding spaces, and study their convergence, structural relation, law of variation in the variable λ, \lambda, including some normed algebra structure. To some extent, the class β^X,Yλ \widehat{\beta }_{X, Y}^{\lambda } is a counterpart of the usual Levy-Prohorov metric in the probability measure spaces, but it behaves very differently, and is interesting in itself. Moreover, when X X is compact and Y=K Y = K is a complete non-Archimedean field, we construct and study a Dudly type metric of the space of K− K-valued measures on X. X. Comment: 43 pages; this is the final version. Thanks to the anonymous referee's helpful comments, the original Theorem 2.10 is removed, Proposition 2.10 is stated now in a stronger form, the abstact is rewritten, the Monna-Springer is used in Section 5, and Theorem 5.2 is written in a more general for

    p-Adic and Adelic Harmonic Oscillator with Time-Dependent Frequency

    Get PDF
    The classical and quantum formalism for a p-adic and adelic harmonic oscillator with time-dependent frequency is developed, and general formulae for main theoretical quantities are obtained. In particular, the p-adic propagator is calculated, and the existence of a simple vacuum state as well as adelic quantum dynamics is shown. Space discreteness and p-adic quantum-mechanical phase are noted.Comment: 10 page

    Phase transitions for PP-adic Potts model on the Cayley tree of order three

    Full text link
    In the present paper, we study a phase transition problem for the qq-state pp-adic Potts model over the Cayley tree of order three. We consider a more general notion of pp-adic Gibbs measure which depends on parameter \rho\in\bq_p. Such a measure is called {\it generalized pp-adic quasi Gibbs measure}. When ρ\rho equals to pp-adic exponent, then it coincides with the pp-adic Gibbs measure. When ρ=p\rho=p, then it coincides with pp-adic quasi Gibbs measure. Therefore, we investigate two regimes with respect to the value of ∣ρ∣p|\rho|_p. Namely, in the first regime, one takes ρ=exp⁡p(J)\rho=\exp_p(J) for some J\in\bq_p, in the second one ∣ρ∣p<1|\rho|_p<1. In each regime, we first find conditions for the existence of generalized pp-adic quasi Gibbs measures. Furthermore, in the first regime, we establish the existence of the phase transition under some conditions. In the second regime, when ∣∣˚p,∣q∣p≤p−2|\r|_p,|q|_p\leq p^{-2} we prove the existence of a quasi phase transition. It turns out that if ∣∣˚p<∣q−1∣p2<1|\r|_p<|q-1|_p^2<1 and \sqrt{-3}\in\bq_p, then one finds the existence of the strong phase transition.Comment: 27 page

    Ergodicity criteria for non-expanding transformations of 2-adic spheres

    Full text link
    In the paper, we obtain necessary and sufficient conditions for ergodicity (with respect to the normalized Haar measure) of discrete dynamical systems on 2-adic spheres S2−r(a)\mathbf S_{2^{-r}}(a) of radius 2−r2^{-r}, r≥1r\ge 1, centered at some point aa from the ultrametric space of 2-adic integers Z2\mathbb Z_2. The map f ⁣:Z2→Z2f\colon\mathbb Z_2\to\mathbb Z_2 is assumed to be non-expanding and measure-preserving; that is, ff satisfies a Lipschitz condition with a constant 1 with respect to the 2-adic metric, and ff preserves a natural probability measure on Z2\mathbb Z_2, the Haar measure μ2\mu_2 on Z2\mathbb Z_2 which is normalized so that μ2(Z2)=1\mu_2(\mathbb Z_2)=1

    Some aspects of the mm-adic analysis and its applications to mm-adic stochastic processes

    Full text link
    In this paper we consider a generalization of analysis on pp-adic numbers field to the mm case of mm-adic numbers ring. The basic statements, theorems and formulas of pp-adic analysis can be used for the case of mm-adic analysis without changing. We discuss basic properties of mm-adic numbers and consider some properties of mm-adic integration and mm-adic Fourier analysis. The class of infinitely divisible mm-adic distributions and the class of mm-adic stochastic Levi processes were introduced. The special class of mm-adic CTRW process and fractional-time mm-adic random walk as the diffusive limit of it is considered. We found the asymptotic behavior of the probability measure of initial distribution support for fractional-time mm-adic random walk.Comment: 18 page

    T-functions revisited: New criteria for bijectivity/transitivity

    Full text link
    The paper presents new criteria for bijectivity/transitivity of T-functions and fast knapsack-like algorithm of evaluation of a T-function. Our approach is based on non-Archimedean ergodic theory: Both the criteria and algorithm use van der Put series to represent 1-Lipschitz pp-adic functions and to study measure-preservation/ergodicity of these

    p-Adic Mathematical Physics

    Full text link
    A brief review of some selected topics in p-adic mathematical physics is presented.Comment: 36 page

    Linearization in ultrametric dynamics in fields of characteristic zero - equal characteristic case

    Full text link
    Let KK be a complete ultrametric field of charactersitic zero whose corresponding residue field k\Bbbk is also of charactersitic zero. We give lower and upper bounds for the size of linearization disks for power series over KK near an indifferent fixed point. These estimates are maximal in the sense that there exist exemples where these estimates give the exact size of the corresponding linearization disc. Similar estimates in the remaning cases, i.e. the cases in which KK is either a pp-adic field or a field of prime characteristic, were obtained in various papers on the pp-adic case (Ben-Menahem:1988,Thiran/EtAL:1989,Pettigrew/Roberts/Vivaldi:2001,Khrennikov:2001) later generalized in (Lindahl:2009 arXiv:0910.3312), and in (Lindahl:2004 http://iopscience.iop.org/0951-7715/17/3/001/,Lindahl:2010Contemp. Math) concerning the prime characteristic case

    On hyperbolic fixed points in ultrametric dynamics

    Full text link
    Let K be a complete ultrametric field. We give lower and upper bounds for the size of linearization discs for power series over K near hyperbolic fixed points. These estimates are maximal in the sense that there exist examples where these estimates give the exact size of the corresponding linearization disc. In particular, at repelling fixed points, the linearization disc is equal to the maximal disc on which the power series is injective.Comment: http://www.springerlink.com/content/?k=doi%3a%2810.1134%2fS2070046610030052%2

    Sparse p-Adic Data Coding for Computationally Efficient and Effective Big Data Analytics

    Get PDF
    We develop the theory and practical implementation of p-adic sparse coding of data. Rather than the standard, sparsifying criterion that uses the L0L_0 pseudo-norm, we use the p-adic norm.We require that the hierarchy or tree be node-ranked, as is standard practice in agglomerative and other hierarchical clustering, but not necessarily with decision trees. In order to structure the data, all computational processing operations are direct reading of the data, or are bounded by a constant number of direct readings of the data, implying linear computational time. Through p-adic sparse data coding, efficient storage results, and for bounded p-adic norm stored data, search and retrieval are constant time operations. Examples show the effectiveness of this new approach to content-driven encoding and displaying of data
    • …
    corecore